
Build your VNF from sratch

Basic Architecture

Open Source MANO (OSM - version 10.0.3)

OpenStack (version wallaby stable)

OSM requirements

2CPUs

6GB RAM (8 recommended)

40GB Disk space

Single interface with internet access

Ubuntu20.04 (64-bit)

Installing OSM

$ wget https://osm-download.etsi.org/ftp/osm-10.0-ten/install_osm.sh 
$ chmod +x install_osm.sh 
$ ./install_osm.sh  
$ ./install_osm.sh --k8s_monitor (install OSM with an add-on to monitor the Kubernetes cluster) 

Check the installation in the browser by accessing your host IP (by default user and password are admin).

Adding a VIM account

$ osm vim-create --name openstack-site --user admin --password userpwd \ 
--auth_url http://10.10.10.11:5000/v2.0 --tenant admin --account_type openstack 

It is also possible to add the VIm through the OSM GUI:

Dashboard > Projects > admin > VIM Accounts > New VIM 

What is a Virtual Deployment Unit (VDU)

VDU is a basic part of a VNF. It is the VM that hosts the network function and its properties are described in the VNF descriptor.

Creating the VNF

Create VNF packages

$ osm package-create --base-directory ~/tutorial vnf tutorial 

This command creates the base package for our VNF.

We are defining the directory, package type and package name.



Change the VNF descriptor (VNFD)

You can find the descriptor in:

~/tutorial/tutorial_vnf/tutorial_vnfd.yaml 

We will start by adding the basic info tou our desciptor:

vnfd: 
  id: tutorial_vnf 
  description: A basic VNF descriptor with one VDU 
  product-name: tutorial_vnf 
  version: "1.0"

As you can see, we are defining an id, description, product name and version.

Next, we want to add our deployment flavour:

  df: 
  - id: default-df 
  instantiation-level: 
  - id: default-instantiation-level 
    vdu-level: 
    - number-of-instances: "1" 
      vdu-id: tutorial 
  vdu-profile: 
  - id: tutorial 
    min-number-of-instances: "1"

This block of code defines a default instatiation level, with 1 VDU instance and with id as tutorial.

  ext-cpd: 
  - id: vnf-cp0-ext 
    int-cpd: 
      cpd: vdu-eth0-int 
      vdu-id: tutorial 
  mgmt-cp: vnf-cp0-ext

Here we are defining the connection points:

The external will connect the VNF to the exterior, so it can be accessible by the Network Service.

The internal will create the connection point to the VDU.

Next, we will define the image to be used. Keep in mind that it needs to exist in your VIM account.

  sw-image-desc: 
  - id: "Ubuntu Server 20.04" 
    image: "Ubuntu Server 20.04" 
    name: "Ubuntu Server 20.04"

Now, we have the VDU specifications:

  virtual-compute-desc: 
  - id: tutorial-compute 
    virtual-cpu: 
      num-virtual-cpu: "1" 
    virtual-memory: 
      size: "1.0" 
  virtual-storage-desc: 
  - id: tutorial-storage 
    size-of-storage: "10"

As you can see, we are defining the CPU, memory and storage for the VDU.



Finally, the VDU configuration:

  vdu: 
  - cloud-init-file: cloud-init.cfg 
    id: tutorial 
    int-cpd: 
    - id: vdu-eth0-int 
      virtual-network-interface-requirement: 
      - name: vdu-eth0 
        virtual-interface: 
          type: PARAVIRT 
    name: tutorial 
    sw-image-desc: "Ubuntu Server 20.04" 
    virtual-compute-desc: tutorial-compute 
    virtual-storage-desc: tutorial-storage

We are giving it a cloud-init file that will be explained later.

We also refering the already created connection points, image, storage and IDs.

Cloud-init file

You can find it in:

~/tutorial/tutorial_vnf/cloud_init/cloud_init.cfg 

This file has the basic initial configurations in the VM:

#cloud-config
password: tutorial
chpasswd: { expire: False }
ssh_pwauth: True
package_update: true
packages: 
  - nmap

We are changing the password, allowing ssh connections with credentials and installing the nmap package.

Validate and Upload the VNF package

$ osm nfpkg-create ~/tutorial/tutorial_vnf 

This command validates and uploads the package to OSM. Make sure you input the correct VNF directory.

Creating the NS

Create NS packages

$ osm package-create --base-directory ~/tutorial ns tutorial 

This command creates the base package for our NS.

We are defining the directory, package type and package name.

Change the NS descriptor (NSD)

You can find the descriptor in:

~/tutorial/tutorial_ns/tutorial_nsd.yaml 

We will start by adding the basic info tou our desciptor:

nsd: 
  nsd: 
  - id: tutorial_ns 
    name: tutorial_ns 
    version: "1.0" 
    description: Simple NS with one VNF and a single Virtual Link



As you can see, we are defining an id, name, version and description.

Next, we need to create a Virtual Link. This link will connect our Network Service to our VIM Network:

    virtual-link-desc: 
    - id: mgmtnet_2 
      mgmt-network: true 
      vim-network-name: proj_net

In our case, the VIM Network is called proj_net.

We also need to connect the NS to our VNF created before:

    vnfd-id: 
    - tutorial_vnf

Make sure that the id is the same as the VNF.

Next, we need to establish the connections between the VNF and the VIM:

    df: 
    - id: default-df 
      vnf-profile: 
      - id: "1" 
        virtual-link-connectivity: 
        - constituent-cpd-id: 
          - constituent-base-element-id: "1" 
            constituent-cpd-id: vnf-cp0-ext 
          virtual-link-profile-id: mgmtnet_2 
        vnfd-id: tutorial_vnf

Notice that the constituent-cpd-id is the same as the external connection point defined in the VNF descriptor.

Also, the virtual-link-profile-id has to be the sameas the one created.

Validate and Upload the NS package

$ osm nspkg-create ~/tutorial/tutorial_ns 

This command validates and uploads the package to OSM. Make sure you input the correct NS directory.

NS instantiation

$ osm ns-create --ns_name tutorial_ns --nsd_name tutorial_ns --vim_account Tron 

This command creates the instance of the network service. Notice that the --nsd_name option has to be the name of the ns package. In our case, the VIM account is

called Tron. Make sure that you input your VIM account.

If all goes accordingly, you should be able to see in the OSM interface that your instance is running and active.

You can also check if your instance is running in the VIM account.

Check the cloud init file

With the VMup and running, you can check if the cloud-init file worked:

$ ssh ubuntu@<your_machine_ip> 
$ nmap 

By connecting to your machine using ssh and checking the nmap package, you ensure that it worked as expected.

Video

For a better description of the tutorial, you can check our video here

https://www.youtube.com/watch?v=GIjamEItXAQ&feature=emb_logo

