Day-1 and Day-2 VNF Operations

Day-1vs Day-2

* Day-1is when you provide the guidelines to include all necessary elements in the VNF package to allow the services to be automatically initialized.
¢ Day-2 operations are designed to provide maintenance, like reconfiguration of services and monitoring.

Installation Lights-on
Setup Maintenance
Configuration Optimization
Code Used

This tutorial uses code from previous tutorials:

¢ VNF developed in "Build your VNF from scratch";
e Juju Charm developed in "Introducing OSM primitives and Juju Charms".

Both are available here
Code modifications
Basic structure

The first step is to download the resources from the previous tutorials.

download the base VNF and NS

$ curl https://codeload.github.com/5gasp/tutorials/tar.gz/master | tar -xz --strip=2 tutorials-master/1-
build_your_vnf_from_scratch/outputs

organize your file structure

mv outputs/*x .

rm outputs —d

add the base juju charm to the VNF file structure

cd tutorial_vnf

curl https://codeload.github.com/5gasp/tutorials/tar.gz/master | tar -xz --strip=2 tutorials-master/2-
introducing_osm_primitives_and_juju_charms

since there were some references to git repositories in the juju charm, you might have to clone these reference
repositories again.

© A H e H

To do so, execute:
$ cd tutorial_vnf/charms/prometheus—node-exporter
$ rm —rf hooks lib mod
$ mkdir hooks 1ib mod
$ In -s ../src/charm.py hooks/upgrade—charm
$ ln -s ../src/charm.py hooks/install
$ In -s ../src/charm.py hooks/start
$ git clone https://github.com/canonical/operator mod/operator
$ git clone https://github.com/charmed-osm/charms.osm mod/charms.osm
$ In -s ../mod/operator/ops lib/ops
$ ln -s ../mod/charms.osm/charms lib/charms
Notice that you are recreating the content of and . This is not entirely mandatory, but if you don’t do this you might encounter some

problems later, since the content of theses two directories was added via a git submodule.

After running these commands, you should have the following structure (using the command):

L— dayl_day2_tutorial
— tutorial_ns
| ==
L tutorial_vnf
— charms
| L

— cloud_init
L

— tutorial_vnfd.yaml
— checksums. txt
L README.md

https://github.com/5gasp/tutorials

VNF Descriptor
file:

Add the following content:

vnfd:
description: A basic VNF descriptor with one VDU
df:
- id: default-df

Juju/LCM Actionns
lcm-operations—configuration:
operate-vnf-op-config:
dayl-2:
- config-primitive:

- name: start-prometheus—exporter
execution-environment-ref: configure-vnf

— name: stop-prometheus-exporter
execution-environment-ref: configure-vnf

id: tutorial_vnf

execution-environment-list:

- id: configure-vnf
external-connection-point-ref: vnf-cp@-ext
juju:

charm: prometheus_node_exporter
proxy: true

config—access:
ssh-access:

default-user: ubuntu
required: true
initial-config-primitive:

— execution-environment-ref: configure-vnf
name: config
parameter:

— name: ssh—hostname
value: <rw_mgmt_ip>

- name: ssh-username
value: ubuntu

— name: ssh-password
value: tutorial

seq: 1

e Day 1and day 2 operations are configured inside the tag H

¢ You need to map the primitives inside the tag, as well as reference the vnf

* You also need to add the execution environment, with the reference to the connection point.

After that, you need to define that this will be a proxy charm and add the ssh configurations.

Notice that the value () is the tag that the OSM uses to get the vnf ip.

Actions
file:

Add the following actions:

Standard 0SM functions
start:

description: "Start the service on the VNF."
stop:

description: "Stop the service on the VNF."
restart:

description: "Restart the service on the VNF."
reboot:

description: "Reboot the VNF virtual machine."
upgrade:

description: "Upgrade the software on the VNF."

This actions will be defined later in the charm file.

Charm

file: tutorial_vnf/charms/prometheus_node_exporter/src/charm.py

Add the following contentinside the ~ init function:

class SampleProxyCharm(SSHProxyCharm):
def __init_ (self, framework, key):
super().__init__(framework, key)

Listen to charm events

Listen to the touch action event

Custom actions

OSM actions (primitives)
self.framework.observe(self.on.start_action, self.on_start_action)
self.framework.observe(self.on.stop_action, self.on_stop_action)
self.framework.observe(self.on.restart_action, self.on_restart_action)
self.framework.observe(self.on.reboot_action, self.on_reboot_action)
self.framework.observe(self.on.upgrade_action, self.on_upgrade_action)

This maps the actions to a python function.

Now, we need to add the functions:

class SampleProxyCharm(SSHProxyCharm):
def __init_ (self, framework, key):
super().__init__(framework, key)

B e e R

OSM methods

SR

def on_start_action(self, event):
"""Start the VNF service on the VM."""
pass

def on_stop_action(self, event):
"""Stop the VNF service on the vM."""
pass

def on_restart_action(self, event):
"""Restart the VNF service on the VM,"""
pass

def on_reboot_action(self, event):
"""Reboot the VM."""
if self.unit.is_leader():
pass

def on_upgrade_action(self, event):

"""Upgrade the VNF service on the VM,"""
pass

You will need to replace the cvent calls with a logger, because OSM doesn't support it when calling an action on boot.
For that, import the logging module:
import logging

Logger
logger = logging.getLogger(__name__)

Then, replace the event calls:

logger.error() # instead of event.fail()
logger.info() # instead of event.set_results()
logger.info() # instead of event.log()

Next, you will need to install the python packages manually, through a function that runs <sh commands.

This is because OSM doesn't do it automatically.

import logging
Logger
logger = logging.getLogger(__name__)

import os
import subprocess

def install_dependencies():
python_requirements = ["packaging==21.3"]

Update the apt cache
logger.info("Updating packages...")
subprocess.check_call(["sudo", "apt-get", "update"l)

Make sure Python3 + PIP are available
if not os.path.exists("/usr/bin/python3") or not os.path.exists("/usr/bin/pip3"):
This is needed when running as a k8s charm, as the ubuntu:latest
image doesn't include either package.
Install the Python3 package
subprocess.check_call(["sudo", "apt-get", "install", "-y", "python3", "python3-pip"])

Install the build dependencies for our requirements (paramiko)
logger.info("Installing libffi-dev and libssl-dev ...")
subprocess.check_call(["sudo", "apt-get", "install", "-y", "libffi-dev", "libssl-dev"])

if len(python_requirements) > 0:
logger.info("Installing python3 modules")
subprocess.check_call(["sudo", "python3", "-m", "pip", "install"] + python_requirements)

start by installing all the required dependencies
install_dependencies()

now we can import the SSHProxyCharm class

from charms.osm.sshproxy import SSHProxyCharm

Notice that we are calling the function before importing the SSHP roxyCharm class, ohterwise it will fail.

After that, and since we want to automatically start the prometheus exporter once the VNF starts, we need to call it inside the VNF on_start function:

def on_start(self, event):
"""Called when the charm is being started"""
super().on_start(event)
Custom Code
self.on_start_prometheus_exporter(event)

Deployment
Onboarding VNF and NS packages
let’'s package and onboard our VNF
$ sudo osm —-hostname 10.0.12.98 vnfpkg-create tutorial_vnf/

let’'s package and onboard our NS
$ sudo osm ——hostname 10.0.12.98 nspkg-create tutorial_ns/

Don't forget to replace the ——hos tname option with your OSM IP.

Deploying the Network Service

New Instance

Mandatory fields are marked with an asterisk ()

Ns Name* test-prometheus-exporter-vnf

Description* test:prometheus-exporter:ynf

Nsd Id* tutorial_ns
VIM Account* HAL-Domain-1

SSH Key

Or load from file

Choose File Browse

Config

z

Gancel

Debug your charm

You can check your charm deployment, inside your OSM machine, to make sure it is working:

on your OSM machine — check the instantiated juju models
$ juju models

switch to your model — example:

$ juju switch 2b294cdc-5000-4e7f-8f6b-5fad1a91fa06

get the logs

$ juju debug-log —-replay

If everything goes accordingly, you should have this:

Open S
o [VTAK]UE & Projects (admin) v @ User (admin) ~

BB Dashboard Projects admin NS Instances
Dashboard

PROJECT

NS Instances A NewNS

Packages

© init @ running/ configured @ failed A scaling Entries 10 #
Instances

Name Identifier Nsd name Operational Status* Config Status Detailed Status Actions
NS Instanc

Select % Select s

VNF I

promehteus_exporter_ynf 0008725-3d16-41£4-845f-

wtoralns ® o borne

_test f3b90aaaeldsa

Now, you can test if the charm performed the desired operations:
rd in ~
- curl http://10.0.12.229:9100/metrics | tail -10

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

100 55633 0 55633 c] 0 298k —i—im= ——i—i— ——i——1— 208k
promhttp_metric_handler_errors_total{cause="encoding"} 0
promhttp_metric_handler_errors_total{cause="gathering"} 0

HELP promhttp_metric_handler_requests_in_flight Current number of scrapes being served.

TYPE promhttp_metric_handler_requests_in_flight gauge
promhttp_metric_handler_requests_in_flight 1

HELP promhttp_metric_handler_requests_total Total number of scrapes by HTTP status code.
TYPE promhttp_metric_handler_requests_total counter
promhttp_metric_handler_requests_total{code="200"} 6
promhttp_metric_handler_requests_total{code="500"} 0
promhttp_metric_handler_requests_total{code="503"} 0

You can try to execute the primitives via the OSM UI, just go to

Perform Action

Primitive Type* VNF Level Primitive
VNF Profile ID * 1 -

Primitive* stop-prometheus-exporter

Gancel

After stopping the prometheus, you shloud have this:

rd in ~
- curl http://10.0.12.229:9100/metrics | tail -10
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
0 ¢] ¢] 0 0 0 0 § ==le=l== ==j==l== =—==—{l== 0
curl: (7) Failed to connect to 10.0.12.229 port 9100: Connection refused

Now, you can invoke the start primitive and run the command again to make sure it starts again successfully.
Video

For a better description of the tutorial, you can check our video here

https://www.youtube.com/watch?v=ilFpib-HECY

