
Day-1 and Day-2 VNF Operations

Day-1 vs Day-2

Day-1 is when you provide the guidelines to include all necessary elements in the VNF package to allow the services to be automatically initialized.

Day-2 operations are designed to provide maintenance, like reconfiguration of services and monitoring.

Code Used

This tutorial uses code from previous tutorials:

VNF developed in "Build your VNF from scratch";

Juju Charm developed in "Introducing OSM primitives and Juju Charms".

Both are available here

Code modifications

Basic structure

The first step is to download the resources from the previous tutorials.

download the base VNF and NS
$ curl https://codeload.github.com/5gasp/tutorials/tar.gz/master | tar -xz --strip=2 tutorials-master/1-
build_your_vnf_from_scratch/outputs
organize your file structure
$ mv outputs/* .
$ rm outputs –d
add the base juju charm to the VNF file structure
$ cd tutorial_vnf
$ curl https://codeload.github.com/5gasp/tutorials/tar.gz/master | tar -xz --strip=2 tutorials-master/2-
introducing_osm_primitives_and_juju_charms
since there were some references to git repositories in the juju charm, you might have to clone these reference
repositories again.
To do so, execute:
$ cd tutorial_vnf/charms/prometheus-node-exporter
$ rm –rf hooks lib mod
$ mkdir hooks lib mod
$ ln -s ../src/charm.py hooks/upgrade-charm
$ ln -s ../src/charm.py hooks/install
$ ln -s ../src/charm.py hooks/start
$ git clone https://github.com/canonical/operator mod/operator
$ git clone https://github.com/charmed-osm/charms.osm mod/charms.osm
$ ln -s ../mod/operator/ops lib/ops
$ ln -s ../mod/charms.osm/charms lib/charms

Notice that you are recreating the content of mod/operator and mod/charms.osm. This is not entirely mandatory, but if you donʼt do this you might encounter some
problems later, since the content of theses two directories was added via a git submodule.

After running these commands, you should have the following structure (using the tree command):

└── day1_day2_tutorial
 ├── tutorial_ns
 │ └── …
 └── tutorial_vnf
 ├── charms
 │ └── …
 ├── cloud_init
 │ └── …
 ├── tutorial_vnfd.yaml
 ├── checksums.txt
 └── README.md

https://github.com/5gasp/tutorials

VNF Descriptor

file: tutorial_vnf/tutorial_vnfd.yaml

Add the following content:

vnfd:
 description: A basic VNF descriptor with one VDU
 df:
 - id: default-df
 ...
 ...
 # Juju/LCM Actionns
 lcm-operations-configuration:
 operate-vnf-op-config:
 day1-2:
 - config-primitive:
 - name: start-prometheus-exporter
 execution-environment-ref: configure-vnf
 - name: stop-prometheus-exporter
 execution-environment-ref: configure-vnf
 id: tutorial_vnf
 execution-environment-list:
 - id: configure-vnf
 external-connection-point-ref: vnf-cp0-ext
 juju:
 charm: prometheus_node_exporter
 proxy: true
 config-access:
 ssh-access:
 default-user: ubuntu
 required: true
 initial-config-primitive:
 - execution-environment-ref: configure-vnf
 name: config
 parameter:
 - name: ssh-hostname
 value: <rw_mgmt_ip>
 - name: ssh-username
 value: ubuntu
 - name: ssh-password
 value: tutorial
 seq: 1

Day 1 and day 2 operations are configured inside the tag lcm-operations-configuration;
You need to map the primitives inside the config-primitive tag, as well as reference the vnf id.
You also need to add the execution environment, with the reference to the connection point.

After that, you need to define that this will be a proxy charm and add the ssh configurations.

Notice that the ssh-hostname value (<rw_mgmt_ip>) is the tag that the OSM uses to get the vnf ip.

Actions

file: tutorial_vnf/charms/prometheus_node_exporter/actions.yaml

Add the following actions:

Standard OSM functions
start:
 description: "Start the service on the VNF."
stop:
 description: "Stop the service on the VNF."
restart:
 description: "Restart the service on the VNF."
reboot:
 description: "Reboot the VNF virtual machine."
upgrade:
 description: "Upgrade the software on the VNF."

This actions will be defined later in the charm file.

Charm

file: tutorial_vnf/charms/prometheus_node_exporter/src/charm.py

Add the following content inside the __init__ function:

class SampleProxyCharm(SSHProxyCharm):
 def __init__(self, framework, key):
 super().__init__(framework, key)

 # Listen to charm events
 ...

 # Listen to the touch action event
 ...

 # Custom actions
 ...

 # OSM actions (primitives)
 self.framework.observe(self.on.start_action, self.on_start_action)
 self.framework.observe(self.on.stop_action, self.on_stop_action)
 self.framework.observe(self.on.restart_action, self.on_restart_action)
 self.framework.observe(self.on.reboot_action, self.on_reboot_action)
 self.framework.observe(self.on.upgrade_action, self.on_upgrade_action)

This maps the actions to a python function.

Now, we need to add the functions:

class SampleProxyCharm(SSHProxyCharm):
 def __init__(self, framework, key):
 super().__init__(framework, key)

 ...
 ...

 ###############
 # OSM methods #
 ###############
 def on_start_action(self, event):
 """Start the VNF service on the VM."""
 pass

 def on_stop_action(self, event):
 """Stop the VNF service on the VM."""
 pass

 def on_restart_action(self, event):
 """Restart the VNF service on the VM."""
 pass

 def on_reboot_action(self, event):
 """Reboot the VM."""
 if self.unit.is_leader():
 pass

 def on_upgrade_action(self, event):
 """Upgrade the VNF service on the VM."""
 pass

You will need to replace the event calls with a logger, because OSM doesn't support it when calling an action on boot.

For that, import the logging module:

import logging
Logger
logger = logging.getLogger(__name__)

Then, replace the event calls:

logger.error() # instead of event.fail()
logger.info() # instead of event.set_results()
logger.info() # instead of event.log()

Next, you will need to install the python packages manually, through a function that runs ssh commands.

This is because OSM doesn't do it automatically.

import logging
Logger
logger = logging.getLogger(__name__)

import os
import subprocess

def install_dependencies():
 python_requirements = ["packaging==21.3"]

 # Update the apt cache
 logger.info("Updating packages...")
 subprocess.check_call(["sudo", "apt-get", "update"])

 # Make sure Python3 + PIP are available
 if not os.path.exists("/usr/bin/python3") or not os.path.exists("/usr/bin/pip3"):
 # This is needed when running as a k8s charm, as the ubuntu:latest
 # image doesn't include either package.
 # Install the Python3 package
 subprocess.check_call(["sudo", "apt-get", "install", "-y", "python3", "python3-pip"])

 # Install the build dependencies for our requirements (paramiko)
 logger.info("Installing libffi-dev and libssl-dev ...")
 subprocess.check_call(["sudo", "apt-get", "install", "-y", "libffi-dev", "libssl-dev"])

 if len(python_requirements) > 0:
 logger.info("Installing python3 modules")
 subprocess.check_call(["sudo", "python3", "-m", "pip", "install"] + python_requirements)

start by installing all the required dependencies
install_dependencies()
now we can import the SSHProxyCharm class
from charms.osm.sshproxy import SSHProxyCharm

Notice that we are calling the function before importing the SSHProxyCharm class, ohterwise it will fail.

After that, and since we want to automatically start the prometheus exporter once the VNF starts, we need to call it inside the VNF on_start function:

 def on_start(self, event):
 """Called when the charm is being started"""
 super().on_start(event)
 # Custom Code
 self.on_start_prometheus_exporter(event)

Deployment

Onboarding VNF and NS packages

let’s package and onboard our VNF
$ sudo osm --hostname 10.0.12.98 vnfpkg-create tutorial_vnf/
let’s package and onboard our NS
$ sudo osm --hostname 10.0.12.98 nspkg-create tutorial_ns/

Don't forget to replace the --hostname option with your OSM IP.

Deploying the Network Service

Debug your charm

You can check your charm deployment, inside your OSM machine, to make sure it is working:

on your OSM machine – check the instantiated juju models
$ juju models
switch to your model – example:
$ juju switch 2b294cdc-5000-4e7f-8f6b-5fa41a91fa06
get the logs
$ juju debug-log --replay

If everything goes accordingly, you should have this:

Now, you can test if the charm performed the desired operations:

You can try to execute the primitives via the OSM UI, just go to Action > Exec primitive:

After stopping the prometheus, you shloud have this:

Now, you can invoke the start primitive and run the curl command again to make sure it starts again successfully.

Video

For a better description of the tutorial, you can check our video here

https://www.youtube.com/watch?v=ilFpib-HECY

